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ON THE POISSON EQUATION
FOR COUNTABLE MARKOV CHAINS:

EXISTENCE OF SOLUTIONS AND PARAMETER DEPENDENCE

BY PROBABILISTIC METHODS

by

Armand M. Makowski! and Adam Shwartz?

ABSTRACT

This paper considers the Poisson equation associated with time-homogeneous Markov chains on
a countable state space. The discussion emphasizes probabilistic arguments and focuses on three
separate issues, namely (i) the existence and uniqueness of solutions to the Poisson equation, (ii)
growth estimates and bounds on these solutions and (iii) their parametric dependence. Answers to
these questions are obtained under a variety of recurrence conditions.

Motivating applications can be found in the theory of Markov decision processes in both its
adaptive and non-adaptive formulations, and in the theory of Stochastic Approximations. The

results complement available results from Potential Theory for Markov chains, and are therefore of

independent interest.
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1. INTRODUCTION

Let P = (pgy) be the one—step transition matrix for a time-homogeneous Markov chain {X, t =
0,1,...} taking values in some countable space S. This paper is devoted to the corresponding

Poisson equation with forcing function ¢ : S — R, namely
h(z) + J = ¢(z) + Zypxyh(y), ze S (1.1)

for scalar J and mapping h : S — R. This equation arises naturally in a variety of problems

associated with Markov chains as the following examples indicate.

1. As shown in Section 3, solving the Poisson equation provides a means to evaluate the
long-run average cost J associated with the cost function ¢ [26]: If (1.1) has a solution (h,J) and

some mild growth conditions are satisfied, then Lemma 3.1 states that

J = lim; E, [t% i c(xs)] (1.2)

where p is the initial distribution and E,, is the corresponding expectation operator.

2. In recent years, there has been widespread interest in stochastic approximation algorithms
as a means to solve increasingly complex engineering problems [1,12]. As a result, focus has
shifted from the original Robbins-Monro algorithm to (projected) stochastic approximations driven
by Markovian “noise” or “state” processes. Properties of solutions to an appropriate Poisson
equation play an essential role when establishing the a.s. convergence of such adaptive algorithms

[1,13,17,19,20,29].

3. In the context of Markov decision processes (MDPs), the need for adaptive policies can arise
in response to both modeling uncertainties and computational limitations [30]. Several adaptive
policies have been proposed as “implementations” to a Markov stationary policy, and shown to yield
the same cost performance (3, 13, 14,18,30]. Here too, the analysis requires precise information on

the solution to the Poisson equation associated with the non-adaptive policy [30].

In many of these applications, it is appropriate to view the forcing function c and the transition
matrix P as parametrized, say by some parameter # (which may be loosely interpreted as a control
variable). The analysis then typically exploits smoothness properties (in ) of the solution A
together with various growth estimates (in z) for A. In addition, estimates on the moments of

{h(Xt), t=0,1,2,...} are required, with the added difficulty that the resulting process {X,, ¢t =
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0,1,2,...} is not necessarily Markovian (say, under the given stochastic approximation scheme or

adaptive policy).

In this paper, our main objective is to develop methods for addressing the concerns above in a
systematic fashion. We emphasize a probabilistic viewpoint, whenever possible, and focus mostly

on the following three sets of issues, namely

1. Existence and uniqueness of solutions to the Poisson equation (1.1);
2. Growth estimates and bounds on these solutions; and
3. Conditions for smoothness in the parameter of these solutions when dealing with the
parametric case as would arise in establishing the a.s. convergence of stochastic approxi-
mations.
Answers to these questions are given under a variety of recurrence conditions. As we try to keep
the exposition relatively self-contained, we have included some standard material on the Poisson
equation. In addition to its tutorial merit, the discussion given here provides a unified treatment
to many of the issues associated with the Poisson equation, e.g., existence, uniqueness and repre-
sentation of solutions. This is achieved by manipulating a single martingale naturally induced by

the Poisson equation.

Questions of existence and uniqueness of solutions to (1.1) have obvious and natural points
of contact with the Potential Theory for Markov chains [11,23]. However, it is unfortunate that
many situations of interest in applications, say in the context of MDPs, are not readily covered by
classical Potential Theory. Indeed, the classical theory treats the purely transient and recurrent
cases separately, and provides drastically different results for each situation. This approach is thus
of limited use in the above-mentioned situations, where the recurrence structure of the Markov
chain is typically far more complex in that it combines both transient and recurrent states. Here,
in contrast with the analytical approach of classical Potential Theory, emphasis has been put on

giving an explicit representation of the solution to (1.1) with a clear probabilistic interpretation.

This probabilistic approach allows for a relatively elementary treatment of existence and
uniqueness, under a rather general recurrence structure. Results are obtained in various degrees
of completeness for both finite and céuntably infinite state spaces; recurrence structures include
multiple positive recurrent classes, and transient classes. A representation for h is derived in detail
in the case of a single positive recurrent class under integrability conditions involving the forcing
function c. The derivation uses elementary methods, and provides intuition into more general sit-

uations. This representation is also shown to hold in the multiple class countable case, and readily
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lends itself to establishing natural bounds on the growth rate of & (as a function of the state), and

to investigating smoothness properties in the parametrized problem.

The paper is organized as follows: The set-up is given in Section 2, together with the basic
martingale associated with (1.1). Various uniqueness results on the the solution (J, h) are discussed
in Section 3. We give two decomposition results in Section 4; one such decomposition is based on
the decomposition of the state space S into its recurrent and transient classes, while the other is
an analog of the standard Green decomposition and relies on an expansion of the forcing function
in terms of more “elementary” forcing functions. To set the stage for the countably infinite case,
we briefly recall an algebraic treatment of the finite-state case in Section 5. In section 6 an explicit
representation for the solution is developed in terms of some recurrence times, under a single
positive recurrent class assumption. An example is developed in Section 7 to illustrate the material
of the previous sections. Bounds and extensions to unbounded cost and multichain structures are
given in Section 8. Equipped with this probabilistic representation of solutions, we embark on
investigating smoothness properties of the solutions to the parametrized problem. Methods for
proving continuity and Lipschitz continuity are developed in Section 9 and 10, respectively.

To close, we note that most of the ideas which are discussed here in the context of countable
Markov chains have extensions to fairly general state spaces. This is achieved by means of the

so—called splitting technique [21, 22] which in essence guarantees the existence of an atom.

2. THE POISSON EQUATION AND ITS ASSOCIATED MARTINGALE

First, a few words on the notation used throughout the paper: The set of all real numbers is denoted

by R and 1[A] stands for the indicator function of a set A. Unless otherwise stated, lim, lim, and

lim; are taken with ¢ going to infinity. Moreover, the infimum over an empty set is taken to be oo
by convention. The mapping § : § x .S — IR is defined by §(z,y) =1 if z = y, and §(z,y) = 0

otherwise. Finally, the notation ) . is often abbreviated as ).
2.1. The set-up

The notion of a Markov chain we adopt here is more general than the elementary one used in most
applications. We do so with the view of broadening the applicability of the material developed
here, especially to problems of adaptive control for Markov chains [13, 14, 17, 18, 29, 30].

As stated earlier in the introduction, the state space is a countable set S, and the one-step
transition mechanism is given by the $ x § stochastic matrix P = (p;,), so that 0 < p,, < 1 and

Zypmy =1for all z and y in S. We assume the existence of a measurable space (2, F) large enough
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to carry all the probabilistic elements considered in this paper. In particular, let {F;, t =0,1,...}
denote a filtration of F, i.e., a monotone increasing sequence of o—fields contained in F such that
Fi: C Fiyq forallt =0,1,..., and let {X;, t =0,1,...} be a sequence of S-valued rvs which are
Fi—adapted, i.e., the rv X; is Fy—measurable for all t = 0,1, .. ..

The Markovian structure of interest is defined by postulating the existence of a family {P,, z €

S} of probability measures on F such that for all z and y in S, we have
and

P:z:[Xt+1 =Yy | ft] = DPX.y Px — a.s. t= 0, ]., o (21b)

With any probability distribution y on S, we associate a probability measure P, on F by setting
P.[A4] := Zmu(m)Px [4], AecF. (2.2)

Obviously, when p is the Dirac measure é; concentrated at some z in .S, then P, reduces to P.

Using (2.1)—(2.2) we easily see that

P, Xo=z|=pu(z), z€8 (2.3a)
and

P.[X¢v1 =y | Fl =p0x,9y 2,yES P, —a.s. t=0,1,...(2.3b)

Under P, the rvs {X;, ¢ =0,1,...} thus have the Markov property with respect to the filtration
{Ft, t = 0,1,...}, and are said to form a time-homogeneous Fy;—Markov chain with one-step
transition matrix P and initial probability distribution . In many instances, we take F; to be
the o-field generated by the rvs Xy,..., X, for all t = 0,1,..., in which case the definition above

coincides with the elementary definition of a Markov chain.

From (2.1a)—(2.2) we readily conclude for p-a.s. all z in S that
P,[A|Xo=z]=P,[4], AeF (2.4)

so that P, has the useful interpretation of conditional probability (under P, for any initial distri-

bution measure p).

Throughout it will be convenient to denote by E, and E, the expectation operator associated

with P, and P, respectively.




2.2, The Poisson equation

Let ¢ be a given Borel mapping S — IR. Throughout, it is understood that a constant J and a
mapping h : § = IR constitute a solution pair to the Poisson equation (1.1) with forcing function

¢ whenever h satisfies the integrability conditions

Zypzym(y)i < o0, zE€S (2.5a)

and the relations

h(z) + J = c(z) + Zypzyh(y), ze S (2.5b)

hold. The Poisson equation is termed homogeneous if ¢ = 0.

For any initial distribution yx, we introduce several classes of R—valued mappings defined on

S. We say that the mapping f : § — IR is an element of
1. Z, if E,[| f(Xy)]] < oo for all t = 0,1,..
2. B, if sup, B,[|f (X,)]] < oo;
3. S, if f belongs to Z, with lim; 1E,[f(X,)] = 0; and

4. U, if the rvs {f(X;), t =0,1,...} are uniformly integrable under P,.
When g is the Dirac measure 8, for some z in S, we substitute the simpler notation Z., B, S;

and U, to Zs_, Bs,, S5, and Us,, respectively.

For any initial distribution y, we readily see that
U,cB,cS,ci, (2.6)

and for any z in S such that p(z) > 0, we have Z,, C 7, B, C B, and U, C U,.

Since any mapping mapping f : § = R can be viewed as a column vector (f(z)), the Poisson

equation (1.1) can be written in matrix notation as
h+Je=c+ Ph (2.7

where e denotes the column vector with all its entries equal to one, i.e., e(z) =1 for all z in S. For
any vector f = (f(z)) and any subset E of S, denote by fg the restriction of f to F and similarly
define Pg as the restriction of P to £. The identity matrix on S is denoted by 1.

2.3. A martingale property



Many of the general results on solutions to the Poisson equation can be traced back to the following

observation.

Lemma 2.1. Let the pair (h, J) be a solution to the Poisson equation (2.5) with forcing function c.
If the mapping h belongs to I,, for some probability measure p1 on S, then the following statements
hold:

1. The forcing function c is necessarily an element of Z,,; and

2. Thervs {M;, t=0,1,...} defined by My := h(X,) and

M)~

Mt+1 = h(Xt.H_) + C(Xs) - (t + 1)J t= O, 1, e (28)

1l
=}

S

form an integrable (P, F;)-martingale sequence.

Proof. Invoking the Markov property, we can reformulate the Poisson equation (2.5) as
(X)) + J = c(Xe) + Euh(Xeq1) | F] t=0,1,...(2.9)

and the P,—integrability of the rvs {c(X¢), t = 0,1,...} follows from the assumption on h. This
proves Claim 1.

To establish Claim 2, we first conclude from the first part of the proof that the rvs {M;, t =
0,1,...} are well defined and indeed P,-integrable. From (2.8), we then get

t
Eu M 1|Fe] = Bu[h(Xer1)|F) + D e(Xs) — (t+1)J t=0,1,...(2.10)
s=0
because the rvs Xy, ..., X, are all 7;—measurable, and the martingale property readily follows from
(2.9). [ |

3. UNIQUENESS RESULTS

In this section, we have collected several uniqueness results for the Poisson equation (2.5). In that
respect, we first note that if the pair (h,J) is a solution to the Poisson equation, so is the pair
(h + ae, J) for any constant . In other words, uniqueness can only be obtained up to an additive

constant. We also observe that for ¢ in Z,,, the definition

T) = T B[ D el (31)
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is well posed. The next lemma is a version of a standard result from the theory of MDPs under a

long-run average criterion {9,26], (30, Lemma. 3.1].

Lemma 3.1. Let the pair (h,J) be a solution to the Poisson equation (2.5) with forcing function

c. If the mapping h belongs to S, for some probability measure p on S, then

J=J(p) =lim; B, [lec(x )] (3.2)

s=0

Proof. Since h is an element of S,,, it is also an element of Z,, by virtue of (2.6). By Claim 2 of
Lemma 2.1 we readily obtain the equalities E,{My] = E,[M,1] for all t = 0,1,... or, equivalently,

in expanded form,

t

D (X } (t+1)J. t=0,1,...(3.3)

s=0

E,u[h(XO)} =E [ Xt+1) +E,

Some simple rearrangements yield

[_Ll-z D] =9 = e BulbCEen ) - B ) £=0,1,... 3.4

= t+1

and the result (3.2) is now immediate upon letting ¢ + oo in (3.4) since h is an element of S,,. M

If the Poisson equation (2.5) admits a solution (h,J) with h bounded, then ¢ is bounded, so
that both c and h belong to U, (thus S,,) for any initial distribution p. It then follows from Lemma
3.1 that J(p) is obtained as a limit which does not depend on the initial distribution p.

The uniqueness of solutions to the Poisson equation is now briefly studied in the class of
“uniformly L;-bounded” solutions, that is in B, for some initial state distribution y. If the state
space contains a set I of isolated states which are not reachable from S\I and if u(I) = 0, then
clearly the chain never visits the states in I. To simplify the exposition we find it convenient to

reformulate the problem on the reduced state space S — I.

The next lemma, is preparatory in nature and will greatly simplify the presentation: For (hy, J;)

and (hg, J3) solution pairs to the Poisson equation (2.5), we define

AJ:=J,—Jy and Ah(a:) = hy (a:) — hg(ﬂ)), z € S. (35)
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Lemma 3.2. Let (h1,J1) and (hg,J2) be two solutions of the Poisson equation (2.5). If Ah
belongs to I, for some probability measure p on S, then the rvs {Ah(X,) —AJt, t =0,1,...} form

a (P, F)-martingale sequence with

AJ = %{Eu[Ah(XHs)] _ E“[Ah(Xt)]}. t=0,1,...;8=12,...(3.6)

Proof. Denoting by {M}, t = 0,1,...} the rvs (2.11) associated with the solution pair (h;, J;),
1 = 1,2, we define the rvs {AM,, t=0,1,...} by

AM; == M} — M? = Ah(X;) — tAJ. t=0,1,...(3.7)

It is plain that (Ah,AJ) is a solution to the homogeneous Poisson equation Ah + AJe = PAh.
Applying Lemma 2.1 to this Poisson equation, we conclude that the rvs {AM,, ¢t = 0,1,...}
indeed form an integrable (P,,F;)-martingale sequence, whence E,[AM;, ;] = E,[AM;] for all

s,t=0,1,.... In expanded form, these equalities become
E [AR(Xiys)] — (t + 5)AJ = EL[AR(X,)] — tAJ s5,t=0,1,...(3.8)
and we obtain (3.6) after simple rearrangements. [ |

The basic uniqueness result can now be developed.

Theorem 3.3. Let (hy,J1) and (ho, J3) be two solutions of the Poisson equation (2.5).
1. If Ah belongs to S,, for some probability measure y on S, then J; = Ja;

2. If in addition Ah is an element of B, then Ah is constant on each recurrent class of the

Markov chain P,,.

Proof. If Ah belongs to S, then its is also an element of Z,,, and Claim 1 follows by letting s 1 co
in (3.6) and using the fact that Ah belongs to S,.

The proof of Claim 2 starts with the observation (2.6) made earlier that since Ah is an
element of B, it it is also an element of S,. Therefore, J1 = Jp by Claim 1 and the rvs
{Ah(Xy), t = 0,1,...} form a (P,,F;)-martingale sequence with sup, E,[|Ah(X;)|] < co. By
a standard martingale convergence theorem [6,10], the martingale sequence {Ah(X}), t=0,1,...}

converges P,—a.s. to a proper rv.

If all the states in S form a single recurrent class under P, then any two states in S, say z
and y, are visited infinitely often P,—a.s. It is now plain that h(z) = h(y) by virtue of the P,-a.s.
convergence of the martingale {Ah(X:), t =0,1,...}, and Ah is therefore constant on S.

9



More generally, let R be a recurrence class under P, i.e., a closed irreducible set of recurrent

states. Since p,, = 0 for all z in R and y not in R, (2.5) implies
hir +Jer =cr+ Prhyr, i=1,2. (3.9)

The matrix Pr can be interpreted as the matrix of one—step transition probabilities for an irre-
ducible Markov chain on R with all its states recurrent, and the problem is now reduced to the

previously considered case. Therefore, hy g — ho r is constant on R and the proof is complete. W

Under conditions weaker than the ones assumed in Theorem 3.3 we can obtain a refinement

of Claim 1 of Theorem 3.3.

Corollary 3.4. Let (hy,J1) and (hs,J2) be two solutions to the Poisson equation (2.5). If for

some probability measure p on S, h; belongs to S, and hy belongs to Z,,, then
.1
hmt —t'E# [hz(Xt)] = Jg - Jl . (310)

Proof. First we note that if h; is an element of S, and if hy belongs to Z,, then Ah belongs to
7,. By Lemma 3.2 we get

AJ = %{EM[Ah(Xt)] ~E,[AR(X0)]} t=1,2,...(3.11)

and (3.10) follows upon letting ¢ 1 co in (3.11) and using the fact that h; is an element of S,. The

existence of the limit is a consequence of the equalities (3.11). [ |

It is very easy to demonstrate the non-uniqueness of solutions to the Poisson equation: Consider
the Markov chain P = (pgy) on the non-negative integers IN with p; .41 =1, z = 0,1,..., and
let ¢ = 0. Then (hy, J2) = (0,0) is obviously a solution to the Poisson equation with hy(0) = 0.
However, the pair (hg, Jo) = (z,1) is also a solution to the Poisson equation with hy(0) = 0. For all
t=0,1,..., wehave X; = Xo+t P,-a.s, whence E,[hy(X;)] = E,[Xo]+1, and under the condition
E.[Xo] < 00, hy is an element of Z,,, but not of S,,. In fact, (3.10) holds as lim; 1E, [h2(X:)] =
1#0.

In Section 7 we discuss the non-uniqueness issue for a more elaborate example of a positive

recurrent system.
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Although in practice it might be hard to verify the L;~boundedness conditions of Theorem
3.3, a simple characterization of the set B, is available in a special yet important case. Recall that

a probability measure y on B(S) is an invariant measure for the one-step transition matrix P if
(@) =3 YW)pye, TES. (3.12)

Under P., the Markov chain {X;, ¢t = 0,1,...} forms a strictly stationary sequence with one-

dimensional marginal distribution +, so that the following characterization is immediate.

Lemma 3.5. If vy is an invariant probability measure for the one-step transition matrix P, then

I,=B,=U, = L, (S,B(S),7).

In [7] Derman and Veinott consider the uniqueness issue for Markov chains with a single
positive recurrent class (in which case the invariant measure v is unique). They show uniqueness

in the class DV of mappings f : § — R such that

T-—~1

> If(Xt)I] <oo, TES (3.13)

t=0

E;

where T := inf{t > 0 : X; = z} for some distinguished recurrent state z. Under these assumptions,

for every mapping f : S — R, we conclude by standard results on Markov chains [5] that

E. S5 F (X0
E.[T]

E,[|f(X:)|] = t=0,1,...(3.14)

Therefore, the inclusion DV C B, holds, so that even in the case of a chain with a single positive

recurrent class, the conditions of [7] are more stringent than the ones given in Theorem 3.3.

4. DECOMPOSITION RESULTS

4.1. A state decomposition result

With the uniqueness result of Theorem 3.3 in mind, we consider the decomposition of the countable
set S induced by the recurrence structure of P: Let T'r denote the (possibly empty) set of transient
states, and let {Rq, a € A}, for some countable index set A, denote the recurrent components.

The sets {Tr, Ry, a € A} form a partition of S. Moreover, for all « in A, p,, = 0 for z in R, and
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y not in R,, and the restriction P, of P to the recurrent class R, is irreducible and recurrent on

it. With the vector notation of Section 2, (2.5) can now be partitioned as
hRa +J6Ra =cRa+PahRa; a€cA (4.1(1,)

hrr + Jerr = crr + ZaEATahRa + Prrhry (41b)

where the matrices {T,, @ € A} and Pr, are determined from the decomposition of P associated

with the sets {T'r,R,, a € A}.
The decomposition (4.1) motivates introducing the following family of Poisson equations
ho + Joer, =cr, + Pahoa, a €A (4.2a)

h+ Jer, = é+ Prh (4.2b)
where for each « in A, hg is a mapping R, — R, while & and £ are mappings Tr — R, with

&=crr + ZaeATaha. (4.3)

The next result shows in what sense the solutions to the projected Poisson equations (4.2)
determine the solution to the original equation (2.5). The proof is a simple consequence of (4.1)
and (4.2), and is omitted in the interest of brevity.

Theorem 4.1. The Poisson equation (2.5) has a solution if and only if the following two conditions
hold:

1. For each o in A, the Poisson equation (4.2a) on R, has a solution (hy,J,) such that

Jo = J for some scalar J independent of o and

> Talhal < oo; (44

2. The Poisson equation (4.2b), with forcing function é given by (4.3) has a solution (h, J)
such that J = J.
A solution pair to (2.5) is necessarily of the form (h,J) with h determined by hg, = hq for all a
in A and hr, = h.

Condition (4.4), which is automatically satisfied when S is finite, guarantees that & (and
therefore (4.2b)) is well defined.
4.2. A Green-like decomposition

12



Let (hy,J1) and (hg, J2) be two solutions of the Poisson equation (4.2) with forcing functions ¢;
and cj, respectively. Then for any §in R, (h, J) := (Bhy + ha, 8J1 + J2) is a solution to the Poisson
equation (2.5) with forcing function Sc; + cp. Indeed, by definition,

h(z) + J = B(hi(z) + J1) + (ha(z) + Jo)
=B (a@) + 3 pam®) + (c2@) + 3 peyha)

= (Ber(@) + e2(2) + 3 pey(Bha () + ha(y)), z €S (4.5)

where the last sum is well defined owing to the definition of a solution (2.5b).
This simple fact can be used as follows: For each v in S, define the function ¢, : § — R by
cy(z) := 0(v; z) for all z in S, and let (h,, J,) denote a solution to the Poisson equation with forcing

function ¢,. The obvious decomposition

c(z) = Zvc(v)cv (), z€S (4.6)

then leads naturally to the formal representation

J= Zvc(v)Jv and h(z) =) c(v)hy(z), z€ES. (4.7)

v

It remains then to check that (4.7) indeed defines a legitimate solution. In view of (4.5), this is
the case whenever c is constant except at a finite number of points. In the more general case, this
check can be done through the constructive arguments of Corollary 6.2, or through the verification

result of Theorem 6.4. Such a calculation is performed directly in Section 7.

5. FINITE STATE SPACES

A complete picture of the solution to the Poisson equation (2.5) is available when S is a finite set,
and can be found in [2, 31]. In the finite space case any solution necessarily belongs to U, for every

initial probability distribution u. Let P* denote the stochastic matrix defined by

t

1
8. 1
t+1ZP’ (5-1)

s=0

P = hmt

its existence is guaranteed by classical results from the theory of Markov chains [2, 31]. Because

the matrix I — P + P* is invertible, the definition
h:=(I—-P+P*)™ (I - P*)c (5.2)
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is well posed. The easy identities P*P = PP* = P*P* = P* lead after some simple algebra to the

relation

h+ P*c = c+ Ph. (5.3)

A simple comparison of (5.3) with (2.5) suggests that h defined by (5.2) will solve the Poisson
equation (2.5) whenever the vector P*c is proportional to e, i.e., all the components of the vector

P*c are identical.

To investigate the matter further, we introduce the canonical decomposition of S into the
recurrent and transient components induced by P, as already done in Section 4. Here, it can be
assumed that P induces m recurrent classes, say Ry,..., R, as well as a (possibly empty) set T'r
of transient states, with the sets {R;,...,R,,,Tr} forming a partition of S. For any vector f, let

fr denote the restriction of f to Rg, k=1,...,m.

Recall that p,, = 0 for z in R}, and y not in Ry, and the restriction P of P to the recurrent
class Ry is irreducible and positive recurrent on it. Possibly upon rearranging P into a block lower

triangular form, we see that the restriction (P*), of P* to Ry coincides with (P;)* given by

1 G
(Pk)*:zllmtt+1ZOPk, k=1,...,m (5.4)

with all its rows being identical to the long-run probability distribution associated with the ir-
reducible chain P;. Consequently, (P*c); = Jier where the scalar Ji, depends on the class Ry.

Therefore (5.3) can be decomposed as

hy + Jrey = cp + Pehy, k=1,...,m (5.5a)
hrr + (P*¢)7y = crr + »_ Tohg + Trhy, (5.5b)
k=1
where the matrices T7,...,T;, and T'r are chosen appropriately from the decomposition of P asso-

ciated with the sets {Ri1,..., Ry, Tr}.

Theorem 5.1. The pair (h,J) is a solution to the Poisson equation (2.5) if and only if the
conditions

Jl =...= Jm =.J and (P*C)T.,. = JeTr (56)

hold, in which case h is given uniquely up to an additive constant by (5.2), and J is the constant
appearing in (5.6). The conditions (5.6) are satisfied when the Markov chain P has a single recurrent

class.
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Proof. The first part is immediate from the discussion given earlier since P*c = Je under (5.6).
The uniqueness follows from Theorem 3.2 and from the fact that I — T'r is invertible. To conclude
the last part, it suffices to observe that under the assumption of a single recurrent class R; for the
Markov chain P, the rows of P* are all identical and of the form (v,07,) where v coincides with

the long-run probability distribution vector associated with the irreducible chain P;. [ |

In fact, (5.6a) implies (5.6b) as can be seen from the discussion in Theorem 6.3 and the remark

preceeding its proof.

6. A PROBABILISTIC FORMULA FOR SOLUTIONS

Consider now the situation where the state space S is countably infinite. The matrix P* is still
well defined, but in general the invertibility of I — P + P* cannot be guaranteed anymore owing
to the intricate nature of the recurrence structures for Markov chains over countably infinite state

spaces. As a result, the algebraic discussion of Section 5 cannot be carried through.

In some situations however, probabilistic arguments can be used to prove the existence of a
solution pair to the Poisson equation. Such a situation arises when there exists a distinguished
state in S, say z, which is positive recurrent in a sense made precise below. In this more restricted
set-up, a possible approach would mimic the arguments of {26, Section 6.7], and would yield the
solution as the limit of the discounted cost associated with ¢, when the discount factor tends to 1.
This line of arguments was developed in [28] and does yield a probabilistic representation of the

solution already obtained by Derman and Veinott [7] through algebraic means.

In this paper, we take a different route for deriving this probabilistic representation of solutions
to the Poisson equation. We do so in several steps by exploiting the martingale property of Lemma
2.1. To precisely state the conditions, we define the first passage time to the state z as the F;—
stopping time 7" given by

T:=inf{t >0: X, = z}. (6.1)

The recurrence condition (R) enforced thereafter is the finite mean condition
(R) T(z):=E;[T] <0, z€8.

The condition (R) is automatically satisfied when the set S is finite and the Markov chain P admits
a single (positive) recurrent class decomposition S = R U Tr into a set R of positive recurrent
states and a {possibly empty) set T'r of transient states. However, when the set S is not finite, the

condition (R) is far more stringent. Indeed, not only does it imply the single class decomposition
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S = RUTr, but it also prohibits the chain from wandering too long or exclusively amongst the

transient states. We relax the first restriction in Section 8.

We also find it convenient to consider the following integrability condition (I), where
T-1
0y Cu(z) :=E, [Z |c(Xt)|] <o, z€SL. (6.2)
=0

Under (I) the quantities
T-1
C(z) :=E, [Z c(Xt)], z€S (6.3)
=0
are well defined. Under the recurrence condition (R), any bounded mapping ¢ will satisfy the
integrability condition (I); in fact the conditions (R) and (I) coincide for ¢(z) = 1 for all z in S.

The next result is a consequence of the martingale property given in Lemma 2.1.

Theorem 6.1. Assume the recurrence condition (R) to hold and let (h,J) be a solution pair to

the Poisson equation (2.5). If h is an element of I, for some z in S, then

TAn-1

> c(Xt)] } = JT(z) + h(z) — h(z). (6.4)

lim,, {Em [1[n < T)A(X,)] + Eq
t=0

Proof. By Lemma 2.1, the rvs {M;, ¢t =0,1,...} given by (2.8) form a (P, F;)-martingale. By
Doob’s Optional Sampling Theorem [6, 10], the stopped process {Mra,, n = 0,1,...} is also a
(P, Fran)—martingale, so that

E.[Mran) = Eo[Mo] = h(z). n=0,1,...(6.5)

By Lemma 2.1 we see that c is an element of Z, because h belongs to 7, and therefore, for all
n=0,1,..., the three rvs h(X7p,), T An and Zz;’\on_l c(X;) are integrable under P,. From the

definition of Mz, we conclude by direct inspection of (6.5) that

TAn-1
h(z) =B |MXran) — (T AR)T + c(Xt)]

t=0
TAn—1
=h(2)P,[T < n] + B [1[T > n](X,)] = JEL[T An]+ Eg | c(Xt)} . (6.6)
t=0

Under (R), we have lim, P.[T' < n] = 1, whereas lim,, E;[T'An] = T(z) by monotone convergence,
and the result (6.4) follows upon letting n 1 oo in (6.6). |
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As we impose additional conditions, we see the form of the probabilistic representation emerge

from the relation (6.4).

Corollary 6.2. Assume the recurrence condition (R) to hold, and let (h,J) be a solution to the

Poisson equation (2.5). If h belongs to U, for some z in S, then the relation

TAn-1

j{: C(X&)

t=0

h(z) = lim, E, —JT(z) + h(z) (6.7)

holds. If in addition, the integrability condition (I) holds, then

h(z) = C(z) — T(z)J + h(z). (6.8)

Proof. Under (R), we have lim, P,[T > n] = 0 and the uniform integrability of the rvs
{h(Xs), t =0,1,...} under P, then implies lim,, E,[1[T > n)h(X,)] = 0, so that (6.7) follows
from (6.4). Under (I) we get

TAn-1 T-1
limp Bz | Y c(Xt)] =E, e Xy)| = O(x) (6.9)
=0 t=0
by dominated convergence, and (6.8) is an immediate consequence of (6.7) and (6.9). |

By carefully inspecting this last proof, we can extract additional information on the interaction
between the uniform integrability of solutions and the integrability condition (6.2): We define the
positive and negative parts of the forcing function ¢ by ci(z) := max{0, +c(z)} for all z in S, so
that c(z) = c.(z) — c—(z) and le(z)| = ¢4 (z) + c-(z). In analogy with (6.3), we introduce the
quantities

T—1
Ci(z) := By {Z ci(Xt)], zes8 (6.10)

t=0

which are both well defined, although possibly infinite. The relation C(z) = C4(z) — C—(z) holds
provided at least one of the quantities Cy(z) and C_(z) is finite, while the equality C.(z) =
Ci(z) + C_(z) is always valid.

Corollary 6.3. Assume the recurrence condition (R) to hold, and let (h,J) be a solution to the

Poisson equation (2.5). If h belongs to U, for some z in S, then the relation

h(z) + O_(z) = Cy(z) — JT(z) + h(2) (6.11)
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holds. If in addition, c is either bounded above or below, then C,(z) is finite and the relation (6.8)

holds.

Proof. We go back to the proof of Theorem 6.1, and observe that for all n = 0,1... the noted

integrability of the rv Z;";/\O"—l ¢(X¢) implies that of the rvs ZZZ\: “!e4(X,). Using this fact we

can rewrite (6.6) as

TAn—1
hz)+Es | Y e (Xt)}
t=0
TAn-1
=h(2)P5[T < n] + B, [1[T > n]h(X,)] — JEL[T An]+E; | > c+(Xt)] (6.12)
t=0

and the proof now proceeds as before: Under (R), we have lim,, P,[T < n] =1, and lim, E.[T A

n] = T'(z) by monotone convergence. Moreover, the uniform integrability of the rvs {h(X), t =
0,1,...} under P, implies lim, E, [1[T > n]a(X,)] = 0, and Ci(z) = lim, E, [ Tan=l., (Xt)]
by monotone convergence. The result (6.11) follows from these facts upon letting n 1 oo in (6.12).

To establish the second statement, we note that ¢ being either bounded above or below implies
that at least one of the quantities C, (z) and C_(z) is finite, whence both are necessarily finite in
view of the relation (6.11). [ |

Corollary 6.2 states that under conditions (R) and (I), any “uniformly integrable” solution
(h, J) of the Poisson equation is necessarily given by (6.8) (up to an additive constant). In a sense,
we can view (6.8) as the “minimal” solution to (2.5). However, as we next show, (6.8) does define

a solution even when there may exist no uniformly integrable one.

Theorem 6.4. Assume both the recurrence condition (R) and the integrability condition (I) to

hold. Then the pair (h,J) given by

_c@)
T(2)

and h(z)=C(z)—-J T(z), z€S. (6.13)

is a solution to the Poisson equation (2.5) with h(z) = 0.
When the state space S is finite and the chain has a single recurrent class, (6.13) provides a

probabilistic interpretation for the solution described through purely algebraic means in [2, 31].

Although condition (R) may seem quite restrictive, it is in some sense close to being necessary.

Indeed, as shown by Cavazos—Cadena {4, Cor. 2.1-2.2, p. 105], if the Poisson equation admits a
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bounded solution for every cost ¢ which vanishes at infinity, then (i) there exists a single recurrent
class, which is necessarily positive recurrent; and (ii) a condition stronger than (R) holds, namely

sup,T'(z) < oc.

Proof. The algebraic manipulations below are validated through the following summability con-
ditions

ngzpmyT(y < oo and Z pzyIC )| < oo, z€S. (6.14)

In view of the comment following (6.3), we only need to establish the second condition in (6.14) as

the first one reduces to it when ¢ = 1. By the Markov property, we get
)| + Z P0uly), €S (6.15)

and the second summability condition in (6.14) follows from the integrability condition (I) since

|C(z)| < Ci(z) for all z in S.

The arguments that lead to (6.15) also show that

) + Z PyC zeS (6.16)
and

=1+ Z 2oy T zesS. (6.17)

For any scalar J, we use (6.16)—(6.17) to write

Clz) - J - T(x) = [c(z) )+ PeC W] -7 [1+Z PaTW|, zes.  (618)

Now, with the choice J = C(z)/T(z), (6.18) becomes
[C(2) =T - T(@)] +J =cl@)+ 3 peylCly) =T T(y)]
)+ Py [CW) = J-TW)), z€8 (6.19)
and (h, J) is indeed a solution of the Poisson equation with J = C(2)/T(z) and h(z) = 0. [ ]

We conclude this section by showing in what sense uniform integrabilty comes close to being

necessary to ensure uniqueness. This will follow from the next result which is a simple consequence

of (6.4) once it is observed that C(z) = lim, E, [ Trn—t c(Xt)] whenever C,(z) is finite.
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Corollary 6.5. Assume the recurrence condition (R) to hold and let (h,J) be a solution pair to

the Poisson equation (2.5). If h is an element of I, for some z in S and if C,(z) is finite, then
lim,E, [1[n < T}h(X,)] = h(z) — h(z) — [C(z) — JT(z)] . (6.20)

We see from (6.20) that this solution h in Z, coincides with that given by (6.13) provided
lim, E; [1{n < T]h(X,)] = 0, a condition reminiscent of uniform integrability (i.e., h in U,) and
indeed implied by it.

7. AN EXAMPLE

In this section we specialize the results obtained so far to a simple reflected random walk. The
solution given by the probabilistic representation is computed explicitly, and shown to belong to
B, (= U, where v is the invariant distribution) whenever the forcing function c is an element of
B,. In that case, we also iidentify a class of solutions which are not uniformly integrable; in fact,
we calculate all solutions to the Poisson equation, thereby exhibiting non-uniqueness for a positive

recurrent Markov chain. The calculations are carried out in Appendix A below.

The situation considered here is that of a random walk on the non-negative integers with

reflection, i.e., S = IN and

Po,0 = Dz+1,2 = 1 —p=q and Prx+1 =D T = 07 17 e (71)

for some 0 < p < 1. With a queueing—theoretic interpretation in mind, we define p := p/q, and
note that this Markov chain is positive recurrent—and condition (R) holds—whenever p < 1 (or
equivalently 0 < p < 1/2). In that case, making use of the defining relation (3.16), we readily

determine the invariant distribution <y to be
v(z) = (1 —p)p° . z=0,1,...(7.2)

For any forcing function ¢, the Poisson equation (2.5) here takes the form

ph(0) + J = ph(1) + ¢(0)
and

h(z + 1) + J = qgh(z) + ph(z + 2) + c(z + 1). z=0,1,...(7.3)

Before addressing the existence of solutions to (7.3), we show that such solutions are not unique.

Indeed, if (h;,J;), i = 1,2, are two solution pairs to (7.3), then their difference (Ah, AJ) (in the
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notation (3.5)) solves the homogeneous equation Ah + AJe = PAh, which can be rewritten as
p[Ah(1) — AR(0)] = AJ

and
plAh(z +2) — Ah(z + 1)] = AJ + q[Ah(z + 1) — Ah(z)]. z=0,1,...(74)

For any value of AJ it is a simple matter to show that all the solutions to (7.4) are given by

Ah(z) = AR(0) +

I%[ll__p;z-l-m], z €S (7.5)
and parametrized by the initial condition Ah(0). Therefore, if (h1,J;) is a solution to (7.3), so is
(h1 + Ah, Jy + AJ) for any choice of AJ (in IR) where Ah is given by (7.5) with that value of AJ.
In other words, even when all solutions to (7.3) are required to have identical initial conditions—a
normalizing condition which dictates Ah(0) = 0 in (7.5)—we conclude that the solution set to (7.3)

must necessarily be non-countable provided it is not empty. This non-uniqueness is independent of

the choice of ¢, and holds also when p > 1, i.e., the chain is null recurrent or transient.

When 0 < p < 1, we observe that Ah given by (7.5) can never belong to U, unless AJ = 0,
thereby confirming the uniqueness of solutions in 4., a result that derives from Theorem 3.3 (and
independently from Corollary 6.2). Therefore, it now remains to determine conditions under which

the solution in U, exists.

With the representation (6.13) in mind, we take z = 0 and use (6.17) to obtain

T(z) = M; z=0,1,...(7.6)
q—p
calculations are outlined in Appendix A.
Next, intent on using the Green decomposition technique of Section 4.2, we compute for each
v in S the cost per cycle function C, associated with the cost ¢, : S = R : z — é(v,z). Since

Jy = v(v), we invoke (3.14) to get

Cy(0) = J,T(0) = y(v)—L— = 4" (7.7)

In Appendix A we also show that

v=20,1: Cy(z) =v/q z=12... (7.8)

v=2: Cy(1) = p*/p, C,(z)=1/¢? z=2,3,... (7.9)

v=3,...: Cyl(z) =p"/p° z=1,2 (7.10a)
Ll

v =3, Cy(z) = - ; o’ z=3,...  (7.10)
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Substituting (7.6)—(7.10) into (6.13), we obtain the solution h, to the Poisson equation with

forcing function ¢, in the form
hy(z) = Cy(z) — J,T(z) = Cy(z) — p°z/q, z€S. (7.11)

Inspection of (7.7)—(7.10) reveals that C,(z) is bounded in z, and the solution h, thus grows linearly
is z. Therefore, invoking Lemma 3.5 (in conjunction with (7.2)), we see that h, is an element of

U, and is therefore the unique solution in that class.

Using the Green decomposition technique of Section 4.2, we can identify a large class of forcing
functions for which (7.3) will have a unique solution in U,; details of the derivation are available

in Appendix A.

Theorem 7.1. Consider the random walk with reflection at the origin defined through (7.1) with
0 < p < 1. Let ¢ be a forcing function S — IR such that |c(z)| < K(1 +r*) for all z in S, for some
positive constants r and K. If rp < 1, then the decomposition (4.7) (where (h,,J,) is given by
(7.11) for all v in S) provides a solution (h,J) to the Poisson equation (2.5), and this solution is in
U,.

8. BOUNDS AND EXTENSIONS

In this section, we explore already some of the advantages afforded by the probabilistic represen-
tation (6.13). We use it to develop various bounds on the solution to the Poisson equation and to

obtain an existence result for unbounded costs under a multichain structure.

8.1. Bounds

The following growth estimate is an easy consequence of the probabilistic representation (6.13).
Theorem 8.1. Assume the recurrence condition (R) to hold. If ¢ is bounded, ie., A :=

sup,, |c(z)] < oo, then the solution pair (h,J) given by (6.13) satisfies the growth estimate

Ih(z)| < (A + ))T(z), z €S (8.1)

Theorem 8.1 does not hold when c¢ is not bounded. However, in many situations of interest,
the underlying Markov chain is “skip-free to the left” with respect to z. For example, in discrete—
time queueing systems it is often the case that the decrease per unit time in the total number of
customers is bounded above by the maximal number of available servers, say K. As a result, with

z representing the empty state, we obtain the relation |X;| < KT, 0 <t < T, where | X;| denotes
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the total number of customers at time ¢, and T is here the time until the system empties. With

this in mind, we introduce the following condition: There exists a positive constant K such that
P,ld(z,X;) < KT, 0<t<T)=1, z€S (8.2)

for some metric d on S. Under such a condition, the representation (6.13) implies the following

bound.

Theorem 8.2. Assume both the recurrence condition (R) and the integrability condition (I) to

hold. If the Markov chain satisfies (8.2), and if ¢ exhibits the growth condition
le(z)] < A(1 + d(z,z)°), z€S (8.3)
for positive constants A and d, then the solution h given by (6.13) satisfies the growth estimate

|h(z)| < B (T(z) + E; [T°*!]), z€S  where B =max{A+ J, AK®}. (8.4)

In other words, the growth rate of h is determined by the growth rate of moments of T'. In particular,
Theorem 8.2 shows how moments of recurrence times can be used to check that the solution (6.13)
indeed belongs to B, or U, for some p. Such information is of interest when studying the a.s.

convergence of stochastic approximations schemes driven by Markov chains [1,20,17].

Proof. Note that (8.4) is automatically satisfied for z = 2z since then h(z) = 0. Now, fixing z # 2
in S, we observe from the definition of C(z) that

T

-1
IC@)| <Es | e (Xt)ll

IA

AE,

T-1
> (1+d(z Xy) )}

t

A

A (T(a:) +E,;

T—1
> (KT )

A(T(z) + K°E, [T°H]) (8.5)

Il

where the second and the third inequalities were obtained by making use of (8.3) and (8.2), respec-

tively. The form of (6.13) now yields (8.4). |
2. Multiple classes
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When the state space contains several positive recurrent classes, it is convenient to use a decom-
position of the state space S into its transient and recurrent components {T'r, R,, o € A}, and to
partition the Poisson equation accordingly. The treatment is similar to the one sketched briefly in
[31].

With the decomposition and notation of Section 4, the results of the previous section extend
to the multiple class case. For every a in A, select a state z, in R, and define the first passage

times to the states z,, o in A, and to the set Z := {z,, a € A} by
To:=mf{t >0: Xy =24}, a€A (8.6)
and
T:=inf{t >0: X; € Z}. (8.7)

Since each recurrent class is closed under P, at most one of the rvs {T,, a € A} is finite P,-a.s.

for each z in S, so that
T = ZaTal[Ta <] on[T< x| P,—a.s. (8.8)
under the convention 0 - co = 0. For future use, we also define
To(z) :=Ey[Tol[T, < x]], a€A €S8 (8.9)
The appropriate version of condition (R) for the multiple class case is the finite mean condition
(Rm) T(z) :=E;[T] <o, z€S.

Note that (Rm) is essentially (R) but with the first passage time T defined through (8.8) rather
than by (6.1). Under (Rm), it is plain that for each z in S, T' < oo P,-a.s. and that for each
a in A, Ty (z) = E4[T,] < oo whenever z lies in R, with the implication that all recurrent states
are positive recurrent. Condition (Rm) also implies that starting at any state z in .S, the process
eventually reaches the recurrent classes and does so in finite expected time.

We now impose conditions (Rm) and (I) (with 7' defined through (8.8)). For every « in A,

the following expressions

Cu(z) =E Ti_:l (X )] z€ R, and J,:= Galza) (8.10)
a T v t 3 o o — Ta(za) .

are then well defined.
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Theorem 8.3. Assume the recurrence condition (Rm) and the integrability conditions (I) to
hold. If there exists a scalar J such that J, = J for all @ in A, then the pair (h,J) withh: S - R
given by

h(z) =C(z)—J-T(z), zinS (8.12)
is solution to the Poisson equation with the property that h(z) = 0 for every z in Z.
Proof. The proof proceeds in two steps.

Step 1: First assume the set T'r of transient states to be empty. In that case the result
follows readily from Theorem 6.3 if it can be shown that for each a in A, the pair (hg,,J,) is
indeed a solution pair to the projected Poisson equation (4.5a) on R,. That this is indeed the case
can be seen as follows. The recurrence condition (Rm) implies that the restriction of the Markov
chain P to the recurrence class R, satisfies the condition (R) imposed in the single recurrent case.
Therefore, by Theorem 6.3 the projected Poisson equation (4.5a) on R, admits as solution the pair
(has Ja) given by

ha(z) = Colz) — Ja - Tu(z), z € R, (8.13)
with J, given by (8.11). However, under (Rm) note that for z in R,, T = T, < oo Pj-a.s.,
whence T'(z) = T,(z) and C(z) = Cu(z). As a result, we find that J = J, = %’((j—:)l = %z—z%, S0
that indeed h(z) = ho(z) for z in R,.

Step 2: When T'r is not empty, the difficulty in obtaining a solution to the Poisson equation
is related to the existence of transient states from which more than one recurrent class can be

reached. First observe however that now (6.13)—(6.14) have to be replaced by

T@)=1+3_ paT@W), z€5 (8.15)
and

C(z) = c(z) + ZyeszyC(y), z€S. (8.16)
Therefore, in the same way that (6.13)—(6.14) lead to (6.16), it is easy to see that (8.15)—(8.16)
imply

(C(@) = J - T +J =cl@)+ 3 pulC) - ITV)]
=c(@)+) pulCl) —J TW), z€S (8.17)

where the last step follows from the fact that C(z) = J - T(2) for every z in Z as was noted in the

first part of the proof. This time algebraic manipulations are validated through the summability
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conditions

ZyeszyT(y) < oo and Zyﬂpww(yn <o, zES (8.18)

which follow from (8.15)-(8.16) and the integrability condition (I). |
It is easy to see that in this case, (3.10b) also has a solution, using (3.10a) and the fact that for

all z in S and y in R, the n-step transition probabilities p;.’;’ each converge to P;[T, < oo] - Vl(,a)

where (%) is the invariant distribution of the Markov chain P when restricted to R,.

9. PARAMETRIC DEPENDENCE: CONTINUITY

In several applications, including stochastic adaptive control and stochastic approximations [1, 3, 13,
17, 19, 20], the analysis simultaneously deals with a parameterized family of Markov chains, rather
than a single Markov chain, and crucial to the arguments is the smoothness (in the parameter) of
solutions to the associated Poisson equations. Of particular interest are conditions on the model
data which guarantee that the solution to the Poisson equation is continuous, or even Lipschitz
continuous in the parameter. It is the purpose of this and the next sections to show how the
representation results of Sections 6 and 8 provide a natural vehicle to explore this question. Our
intent is not to get the best possible results, but rather to suggest ways of attacking these parametric

issues.

In order to simplify the notation, the discussion is given only for the case of a scalar parameter
set, as similar arguments can be developed mutatis mutandis for more general situations: Let the
parameter set © be a Borel subset of IR, and consider a family {P(6), 6 € ©} of one-step transition
probability matrices on the countable set S, with P(0) = (p,,(0)). For every 6 in © and z in S,
let Pz and Ez denote the probability measure and corresponding expectation operator induced on
(Q2, F) by P(0) given that Xo = z.

The set-up is the one of Section 6. There exists a distinguished state z in S such that for all
g in O,

T(0,z) :=El[T] <00, z€8 9.1)
with T' still denoting the first passage time (6.1) to the state z. In other words, the recurrence

condition (R) holds with respect to the same point z independently of 6.

For every 8 in O, a given mapping ¢(6) : S - R : z — ¢(#, z) is assumed to drive the Poisson

equation (2.5) associated with P(6), i.e.,

h+J = c(8)e+ PO)h. (9.2)
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For all 6 in ©, the integrability condition (I)

E0

T-—1
> lc(Xt)ll <o0, T€ES (9.3)
t=0

is assumed to hold. Under the enforced assumptions, we may invoke Theorem 6.3 to conclude
that (9.2) admits at least one solution (h(6),J(#)) where J() is a scalar and h(f) is a mapping
S = R :z — h(6,z). With the requirement h(#,2z) = 0, this solution (h(6),J(#)) has the

representation

J(0) = ~ and h(0,z) =C(0,z) —J(9)-T(0,z), z€S. (9.4)

The next result identifies a set of natural conditions for establishing continuity of solutions to (9.2).

Such a regularity property was required, for example in [3].

Theorem 9.1. Under the foregoing conditions, suppose that for each = in S,

(i) the mapping 6 — ¢(0,z) is continuous on ©;
(ii) the mapping 6 — p,(8) is continuous over © for all y in S;
(iii) the family of probability measures {p,.(0), 8 € ©} on S is tight;
(iv) the rvs {(T,P?), 6 € ©} are uniformly integrable; and

(v) the rvs {(Z;‘rz_ol lc(8, X¢)|,P?), 6 € ©} are uniformly integrable.
Then for every x in S, the mappings 6 — T(0,z) and 8 — C(0,z) are continuous over ©.
In many applications, ¢(8,z) = c¢(z) for all z in S and € in © so that (i) automatically holds,
while (iii) is satisfied whenever one-step transitions have some uniform (in #) nearest-neighbor
properties. The conditions (iv)—(v) are usually checked by (stochastically) bounding the original
system uniformly in # by means of another system which is naturally suggested by the original
system. This approach was taken by Rosberg and Makowski in {25].

The next two lemmas are needed in the proof of Theorem 9.1; their proof can be found in

Appendix B.

Lemma 9.2. Assume (ii)—(iii) of Theorem 9.1. For allz andy in S, and k = 1,2,. .., the mappings
=P T =kl and 6 — Pl[X, =y, T =k], 1 <t <k, are all continuous on ©.

Lemma 9.3. Assume (iii) of Theorem 9.1. For each t = 1,2,... and = in S, the family of

distributions {(X, P?), 6 € O} is tight.
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To prepare the proof of Theorem 9.1, we set

TAm-1
Crm(8,z) :=ES |1[T < m] Z c(0,Xy)|, z€S. m=12,...(9.6)
t=0

Proof of Theorem 9.1. Let z be a fixed element in S. By a standard decomposition argument,
there is no loss of generality in assuming c¢(#,z) > 0 for all z in S and € in ©. Moreover the first

claim follows from the second one upon using ¢(6,z) = 1.

In the general case, standard facts from analysis [27] imply the desired continuity result if it
can be established that the mappings § — C,,,(0,z), m = 1,2,..., are continuous on O, and then
that the convergence lim,,,C,,, (8, z) = C(0,z) is uniform in 6.

To establish the first step, it suffices to show that the mappings 8§ — Ef [1[T = k]c(8, X;)],

0 <t < k, are continuous for (9.6) can be written as

Ea
|
.

Crn(8,z) = EY [1[T = k]c(8, X3)] - m=1,2,...(9.7)

NE

=
I
i
o
I
o

Fix 0 < t < k. Because the rvs {(X;,P?), 6§ € ©} are tight by Lemma 9.3, for every § > 0 there
exists a finite subset G (8) of S such that supyce P4[X; & G.(8)] < 6. Therefore the easy bound

T—-1
EJ [1[T = K]L[X, & G4 (8)]c(6, X:)] < Ef |1[X, & Go(5)] D (6, X.) 9.8)

§=0

and the uniform integrability condition (v) together imply that for every ¢ > 0 there exists some
d(e) > 0 such that

supy BY [1[T = k]1[X¢ & G4 (6(e))]c(8, X¢)] < e. (9.9)

On the other hand, the mapping 6 — E¢ [1[T = k]1[X; € G.(6(¢))]c(f, X})] is continuous by virtue
of Lemma 9.2 since G,(d()) is finite. The desired continuity of the mapping § — ES[1[T =
klc(6, X)) readily follows from this remark and from (9.9) by using a standard decomposition

argument. Details are left to the interested reader.

For the second step, start with the estimate
T-1

0<C(0,2) — Cm(8,2) = E [1[m < T] ) (6, Xy) m=1,2,...(9.10)
t=0
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and observe that the uniform integrability of the rvs {(T,P?), 8 € ©} yields lim,,sup,P[T > m] =

0. This fact and the uniform integrability condition (v) immediately imply the uniform convergence

T-1
lim,, supy EZ |1[m < T] ) (6, X;)| =0 (9.11)
t=0
and the proof is now complete. [ ]

10. PARAMETRIC DEPENDENCE: LIPSCHITZ CONTINUITY

Metivier and Priouret [20] have shown that the a.s. convergence of stochastic approximations passes
through the Lipschitz continuity of solutions (h(8), J(6)) to the parametrized Poisson equation (9.2).
Arguments for establishing such Lipschitz continuity are now outlined in a somewhat restricted set-
up which often occurs in applications [13, 17]. To that end, we postulate that for all z in S, the
probability measures {p,.(8), 8 € ©} on S are mutually absolutely continuous, i.e., if p,,(6) = 0
for some y in S and 8 in ©, then p,,(0') = 0 for all # in ©. As a result, for each m = 1,2,...,
the probability measures {P%, 6 € ©} are mutually absolutely continuous on the o-field F,,. If
LZ,(8,0") denotes the Radon-Nikodym derivative of P? with respect to P¢ (on F,,), then

m—1
0/
Lz,8,8) = ] 2;):+1 (0)) m=1,2,...(10.1)
'L=0 2<vi41

where the convention § = 0 is adopted. With LE(6,6') = 1, the rvs {LZ,(9,0'), m =0,1,...} form

a (P, ]—'m)—martinga,le, and for any non-negative Fra,,—measurable rv X,
EY [X] = E®[L&.,,.(6,0') - X] m=0,1,...(10.2)

by standard results on absolutely continuous changes of measures [6].

Theorem 10.1. Under the foregoing conditions, suppose there exist a constant K > 0 and a

mapping S — (0,00) : z = K(z) such that for all @ and ' in O,
Py (6) “‘Pwy(el)l < Kpzy(0) - |0 — ¢, z,yeS (10.3)

and
lc(8,z) —c(@,z)| < K(z)-10-¢|, z€b. (10.4)

If the moment conditions

~

-1
K(z) := sup, E’

K(Xt)] <00, TES (10.5)
t

1l
=)

and
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T-1
C(z) :=supy EY |T (1 +6)T Z |c(6, X+t)| z€eS (10.6)
¢=0

are satisfied for some 0 < § < 1, then for every z in S, the mappings 6 — C(0,z) are locally

Lipschitz continuous over ©. In fact, whenever |6 — §'| < %, the Lipschitz estimates
|C(8,z) — C#,z)| < L(z)|# —¢'|, z€8 (10.7)

hold with L(z) := KC(z) + K (z) for all z in S.

A few observations are in order before giving a proof of Theorem 10.1: A result on the Lipschitz
continuity of the mappings 8§ — T(8,z), z in S, is readily obtained from Theorem 10.1 upon using
¢(f,z) = 1, in which case conditions (10.4)-(10.5) are automatically satisfied, and (10.6) reduces

to

T(z) := supy BY [T2(1+ a)T] <oo, z€S. (10.8)

In fact, (10.6) also reduces to (10.8) whenever the cost function is bounded, i.e., |¢(0,z)| < B for
all z in S and € in ©.

When the Lipschitz constant in (10.4) does not depend on z, i.e., K(z) = K for all z in S,
then (10.5) reduces to the condition sup, Ef [T] < oo for all z in S.

The uniform bounds (10.8) can be checked in a variety of ways. For instance, in [15, 16, 17, 29]
the authors considered a particular model where the distribution of the first passage time T under
P? is independent of § — of course a rare occurrence — so that (10.8) becomes a simple moment
requirement. Some general methods are sketched in [17]. In other situations, specific arguments
have to be developed, as we now do under the assumption that for some distinguished 6* in O,

there exists a constant B > 0 such that for all 4 in O,

Poy(6)
Pay(6%)

< B whenever p;,(6*) >0, z,y€S. (10.9)
In that case, fixing 6 in © and z in S, we observe from (10.2) that

E? [1[T < m] (T Am)] < EY [1[T < m)(T Am)- BTA™] m=1,2,...(10.10)

because 0 < L%,,.(6%,0) < BTA™ by virtue of (10.9), whence E¢ [T] < Ef” [T - BT] by a sim-
ple limiting argument. The same reasoning shows that Ef [T2(1 +6)T] < E&" [T2((1 + 6)B)7].
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Consequently (10.8) holds under the structural condition (10.9) if the more compact conditions

EY [T?((1+8)B)T] < oo holds.

Proof of Theorem 10.1. Let z be a fixed element in .S. As in the proof of Theorem 9.1, there is

no loss of generality in assuming ¢(6,z) > 0 for all z in S and 8 in ©.

Fix 6 and ¢’ in ©. It is easily seen from (9.6) and (10.2) that

TAm-—1

Cp(8,z) =KL

t=0

With this relation in mind, we define

An(0,60) = E?

TAm—1
UT <m[1 = Lipm (6,6] - ) 6(07Xt)]

t=0
and
TAm—1 TAm-1
Bn(6,8') :=E® |1[T <m]- L%, .(6,6) - { Y od0,X) - Y c(9’,Xt)”
t=0 t=0
for allm =1,2,..., so that Cp,(8,z) — Cpo(¢',2) = A,,(6,60') + B, (0,0') for m =0,1,....

Condition (10.3) implies

pwy(al)
Pay(0)

so that on the event [L%., (6,6’) > 0], provided K|0 - ¢'| < 1,

-

< K-|0—6'| whenever p,,(6) >0, z,y€S,

(1-K|g—-0) """ —1<L15,,.6,0)—1<(1+ Ko -0 1. m=172,...

From the easy identities

t
(1:I:Kt)m—1=/ (EmK) - (1+ Kr)™ldr, >0 m=1,2,...
0

we conclude

(1:l:Kt)TAm—1’SK(T/\m)~(1+5)T’\m-t m=1,2,..

T <m) Ly, (0,6) Y c(9',Xt):| . m=1,2,...

(10.11)

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

.(10.17)

whenever 0 < ¢t < 2 (where 0 < 6 <1). Therefore, upon combining (10.15) and (10.17), under the

condition K160 — 6’| < ¢ we find

TAm—1

|Am(9’ el)l < K- Ez

t=0
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for all m =1,2,..., and a simple limiting argument yields

-1
lim,,, [4,,(6,6")] < K -E |T-(1+8)T ) c(8,X,) } |6 — 8. (10.18)

t=0

On the other hand, we have

TAm—1
1B (8,8")| < Ef (LT < m]- LF,,,(6,6) - Y |c(6,X:) — 0(9',Xt)|}

. t=0

[ TAm—1
<ES 1T <m]- L§,.(6,6) - ) K(Xt)jl o—¢
B t=0

T

TAm-—1
1T <m] 3 K(Xt)]|9—9’| m=1,2,... (10.19)
t=0

where the second inequality is a consequence of (10.4), and the final equality follows from (10.2).

Consequently, in the limit, we conclude that

lim,, |Bn(6,0") < EY

T
> K( } 16— ¢ (10.20)

t=0

and the result now readily follows from (10.18) and (10.20). |

Acknowledgment: We are indebted to an anonymous referee for pointing out reference [7].

APPENDIX A: THE EXAMPLE
To obtain (7.6) from (7.2), we apply (6.17) with z = 0 to get

T(z) =14 pT(z+1), z=0,1 (A1)
and

T(z) =14+ pT(z+ 1)+ qT(z — 1). z=2,3,... (A2)

Since T(0) = 1/(0) by standard results on Markov chains, we can use (7.2) to obtain (7.6).
Indeed, the validity of (7.6) can be seen by substituting T(0) into (A.1)-(A.2), so that T(3) —
T(2) = T(2) — T(1). Using (A.2), we see that this last equality propagates by induction, i.e.,
T(x+1)—T(z)=T(x) —T(z—1) for allz = 2,... and (7.6) readily follows.
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Fixing v in S, we now set out to compute the cost per cycle C, associated with c,. To do so,

we use the system of equations (6.16) which here takes the form

Cy(z) = cy(z) + pCy(z + 1), z=0,1 (A.4)

and

Cy(z) = ¢y(z) +pCy(z +1) + qCu(z — 1), z=2,3,... (A.5)

For v = 0,1 or v = 2, we use (A.4)—(A.5) to get (7.8)—(7.9) by straightforward calculations.
The case v > 3 is more involved: We observe that C,(z) = C,(z + 1), =z =wv,... which is readily

derived from the definition of C, (which holds for v > 1). Moreover, as the relation (A.5) implies
p(Cy(z+1) - Cy(z)) =q(Cy(z) —Cy(z—1)), z=2,...,v—1 (A.6)
we conclude that
Co(z+1) = (Co(z +1) = Cy(2)) + (Co(z) — Co(z — 1)) + ... + (C(2) = Cu (1)) + Cu(1)
=§p_j(01,(2) -C,(1)+C(1), z=2,...,0—1. (A7)
§=0

Because ¢,(0) = ¢,(1) = 0, we obtain (7.10a) from (7.7) and (A.4), and combining this last
relationship with (A.7), we finally get (7.10b) after some algebra.

Proof of Theoem 7.1. First, we observe from (A.3) and the hypothesis that

o0

Yo le(o)ldy KD (1+7°)(1-p)p’ < oo (4.8)

v=0 v=0

because p < 1 and rp < 1, and the quantity J given by (4.7) is therefore well defined. Next, using
(7.6), and the fact p < 1, we see that

gv(x)T(a:) =1+ i <o (A.8)
Finally, we claim that
>_ @)Y e)|Co(@) < oo (A.10)
=0 v=0



Before giving a proof, we combine (A.10) with (4.7) and (A.9) to conclude that for each z in 9,
the quantity h(z) given by

h(z) =Y c()hy(z) = Y c(v)[Cy(z) — LT (z)] = Y c(v)Cy(z) — JT(z) (A.11)
=0 v=0

v=0

is well defined since all infinite series are absolutely convergent.

To establish (A.10), we first interchange the order of summation (by a simple application of

Tonelli’s Theorem), and note that

D (@)D 1e®)|C(z) <K > (1 +1Y) Y 1(2)C,(2)
=0 v=0 v=0 =0
=K(1-p)> (1+7"))_ p°Cy(a). (A.12)
v=0 =0

The fact that the right hand side of (A.12) is finite follows from (7.8)-(7.10) once we observe that
for v = 3,4, ..., the bounds

p’ z=0
Cy(z) < {Cp”‘z(l —-p%), z=1,...,v (A.13)
C(1 —p") z=v,0+1,...

hold for some positive constant C' which depends only on p. The calculations are tedious and are

omitted; the finiteness of the various infinite series follows from the fact that p < 1 and rp < 1.

Combining (A.9) and (A.10) with (A.11) we see that h defined by (A.11) belongs to B, = U,.
As the Poisson equation (3.1) involves here only a finite sum, it is immediate by substitution that
under the stated conditions, the pair (h, J) defined above is indeed a solution to (3.1) since for each

v in S, the pair (hy,Jy) is a solution to the Poisson equation. [

APPENDIX B: PROOFS OF LEMMAS 9.2-9.3

Proof of Lemma 9.2. Both parts are proved along similar induction arguments. For the first
part, since PY[T = 1] = p,.(#) for all z in S, the assumption (ii) implies the continuity of the

mapping § — P8[T = k] for k = 1. The induction argument will propagate through the relations

PlT=k+1)= Zy#pxy(e)PZ[T =k, z€8 k=1,2,...(B.1)
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which are simple consequences of the Markov property for all # in ©. Indeed, fix z in S and assume
that for some £ = 1,2, ..., the mapping 6 — PZ[T = k] is continuous for all y in S. By the tightness
condition (iii), for every € > 0, there exists a finite subset F, of S\{z} such that

SUPjco [Zyng pmy(H)] <e. (B.2)

It is now plain from (B.1)—(B.2) that for all 8 and ¢’ in O,

PT=k+1-Pl[T=k+ 1]\ < 2%+ Zyem Pay(O)PIIT = k] — poy (0VPE [T = k]|  (B.3)

and therefore Timg_y g |Pg [T=k+1]-PY[T=k+ 1]| < 2¢ by invoking (ii), the induction hy-
pothesis and the finiteness of F,. The continuity of § — P2[T = k + 1] follows.

For the second part of the lemma, only the case y # z needs to be considered for otherwise the
result is trivially true since P9[X; = 2,7 = k] = 0 on © for all z in S whenever 1 < ¢ < k. Thus,
for all @ in O, set

Clzt,y) =P [X, #2 1<s<t X,= yl, z,yeS t=1,2,...(B4)
and observe from the Markov property that for all z and y # z in S,
PlX,=yT=k=PlT=k-t] (z;t,y), 1<t<k (B.5)

Therefore, by the first part of the proof, it suffices to show that the mappings § — ¢°(z;t,y),
t=1,2,..., are all continuous as z and y range over S. This is done again by induction. Fix y
in S and observe that for all z in S, the continuity of § — ¢®(z;t,y) readily follows from (ii) for
t =1, since ¢°(z;1,y) = P?[X; = y] = pyy(6). Now assume that for some ¢ = 1,2,... the mappings
6 — ¢%(v;t,y) are continuous for all v in S. The relations ¢®(z;¢ + 1,y) = > vstzPr(8) - ¢ (v;t,y)
hold for z in S and t = 1, 2,...; they are simple consequences of the Markov property, and can be
used to propagate the induction as in the first part of the proof. Details are left to the interested

reader. |

Proof of Lemma 9.3. The proof is again by induction. Let z be a given element of S, and note
that for ¢ = 1 the result is true by assumption since the tightness of {(X1,P?), § € ©} is nothing
but (iii). To proceed further, observe from the Markov property that for every finite set F of .S,

PolXi1 € F]=)  peoy(OP)[X, ¢ F], z€S. t=1,2,...(B.6)
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Now assume that for some t = 1,2,..., the rvs {(Xt,Pz), 0 € O} are tight for each y in 3,
in which case for every d > 0, there exists a finite subset G,(d) of S such that supgeeo PZ[Xt 4
Gy(0)] < 6, for y € S. As in the proof of Lemma 9.2, let F, be the finite subset of .S guaranteed by
(iii) such that (B.2) holds, and set G(g, §) = Uyer, Gy (d). It is plain that

SUPgco ZyeFepmy(o)Pz[Xt ¢ G(&‘, 6)] <4 (B7)
while the defining property of F; implies
SWPpco ), . Pou(OPY[X: € G(e,0)] <e. (B-3)

Combining (B.6) with (B.7)-(B.8) leads to supgce P%[X¢11 & G(e,68)] < £+ J and this completes

the proof since € and § are arbitrary. |
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